源码属性
授权 | 开源 |
大小 | 6.72MB |
语言 | Python |
源码简介
MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz
Testing模块、隐私保护与评估模块。
对抗样本鲁棒性模块
对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。
对抗样本鲁棒性模块的架构图如下:
Fuzz Testing模块
Fuzz
Testing模块是针对AI模型的安全测试,根据神经网络的特点,引入神经元覆盖率,作为Fuzz测试的指导,引导Fuzzer朝着神经元覆盖率增加的方向生成样本,让输入能够激活更多的神经元,神经元值的分布范围更广,以充分测试神经网络,探索不同类型的模型输出结果和错误行为。
Fuzz Testing模块的架构图如下:
隐私保护模块
隐私保护模块包含差分隐私训练与隐私泄露评估。
差分隐私训练模块
差分隐私训练包括动态或者非动态的差分隐私SGD、Momentum、Adam优化器,噪声机制支持高斯分布噪声、拉普拉斯分布噪声,差分隐私预算监测包含ZCDP、RDP。
差分隐私的架构图如下:
隐私泄露评估模块
隐私泄露评估模块用于评估模型泄露用户隐私的风险。利用成员推理方法来推测样本是否属于用户训练数据集,从而评估深度学习模型的隐私数据安全。
隐私泄露评估模块框架图如下:
转载请注明来源:MindArmour v1.9.1
本文永久链接地址:https://www.ymkuzhan.com/65060.html
本文永久链接地址:https://www.ymkuzhan.com/65060.html
下载声明:
本站资源如无特殊说明默认解压密码为www.ymkuzhan.com建议使用WinRAR解压; 本站资源来源于用户分享、互换、购买以及网络收集等渠道,本站不提供任何技术服务及有偿服务,资源仅提供给大家学习研究请勿作它用。 赞助本站仅为维持服务器日常运行并非购买程序及源码费用因此不提供任何技术支持,如果你喜欢该程序,请购买正版! 版权声明:
下载本站资源学习研究的默认同意本站【版权声明】若本站提供的资源侵犯到你的权益,请提交版权证明文件至邮箱ymkuzhan#126.com(将#替换为@)站长将会在三个工作日内为您删除。 免责声明:
您好,本站所有资源(包括但不限于:源码、素材、工具、字体、图像、模板等)均为用户分享、互换、购买以及网络收集而来,并未取得原始权利人授权,因此禁止一切商用行为,仅可用于个人研究学习使用。请务必于下载后24小时内彻底删除,一切因下载人使用所引起的法律相关责任,包括但不限于:侵权,索赔,法律责任,刑事责任等相关责任,全部由下载人/使用人,全部承担。以上说明,一经发布视为您已全部阅读,理解、同意以上内容,如对以上内容持有异议,请勿下载,谢谢配合!支持正版,人人有责,如不慎对您的合法权益构成侵犯,请联系我们对相应内容进行删除,谢谢!